

S27a (abstract no. 17186)

64th Annual Meeting of the EAAP, 26-30 August 2013, Nantes / France

Genetic analyses of linear conformation and performance traits in Warmblood horses

K.F. Stock ¹, J. Duensing ², W. Schulze-Schleppinghoff ², J. Krieter ³

- ¹ Vereinigte Informationssysteme Tierhaltung w. V. (vit), Verden
- Oldenburg horse breeding society, Vechta
- Institute for animal breeding and husbandry, Christian-Albrechts-University of Kiel, Kiel

Background

- conformation & performance evaluations of studbooks
 - → valuating scores
 - PRO: easy to use / fast, clear ranking
 - CONTRA: subjective, loss of detailed information
- high reputation of linear profiling
 - PRO: more objective, specific trait definition, better discrimination
 - CONTRA: requirements of time (increased no. of traits) / personnel
 - → intense R&D activities on how to implement linear profiling in the Warmblood horse different approaches:
 - 1) simplified linear schemes
 - 2) documentation assistance for selected events
 - 3) efficient documentation in (all) regular breeding events

28th August 2013, Nantes (Genetic analyses of linear traits; STOCK et al.)

Linear profiling in Oldenburg

- 'quasi-linear' descriptive notes
 - common / necessary (requests to comment on individual horses)
 - personal style (extent, detailedness, form)
- development of own linear system
 - extensive scheme (no compromise concerning spectrum of traits)
 - adherence to individual extent of documentation (own responsibility)
 - linear profile as part of the official assessment (judging commission + documentation assistance, no extra-time)
 - mobile device for recording (tablet PC)
- routine linear profiling at regular breeding events of the Oldenburg horse breeding societies (OL, OS) since 2012

28th August 2013, Nantes (Genetic analyses of linear traits; STOCK et al.)

Aims

- estimation of genetic parameters for linear conformation and performance traits
- assessment of opportunities / conditions of including linear data from different age groups in future breeding programs

28th August 2013, Nantes (Genetic analyses of linear traits; STOCK et al.)

2

Data

- linear profiles (N=2,902) of juvenile and adult horses presented at regular breeding events of OL/OS in 2012 and 2013
 - foal registrations,
 - mare shows, mare performance tests, stallion inspections & approvals
- uniform linear scheme
 - definition of performance traits considering presentation conditions
 - average expression [0] as default, active documentation of deviations from average expression

Trait group	No. of full scale linear traits [-3 to +3]	No. of half scale linear traits [0 to +3]
Conformation (CONF)	56	15
Movement in hand (HMOV)	15	2
Free movement & free jumping (FMOV)	26	8
Movement under rider (RMOV)	24	7

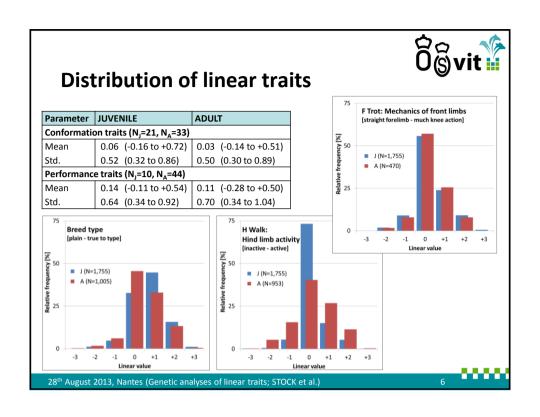
28th August 2013, Nantes (Genetic analyses of linear traits; STOCK et al.)

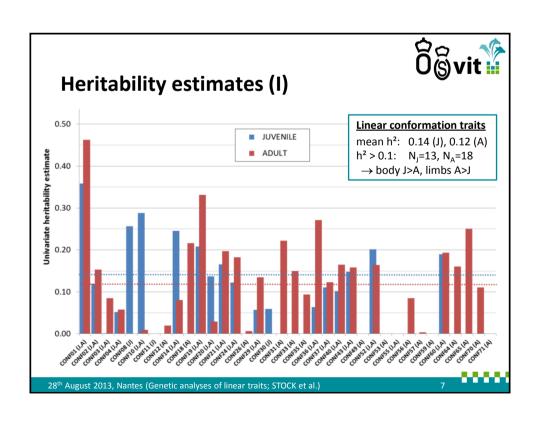
Genetic analyses

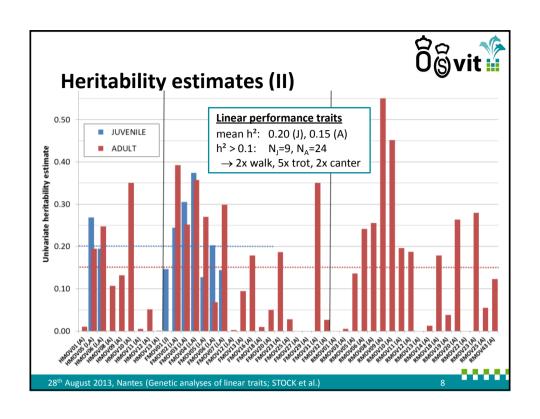
- trait definition within age group: juvenile (J), adult (A)
- single records per horse:
 N_J=1,755 (885 ,870), N_A=1,037 (754 ,283)
- estimation of genetic parameters with REML / VCE6

in linear animal models for selected traits

- within age group (univariate)
- bivariate across age groups


Trait group	UNIVARIATE	BIVARIATE
Conformation (CONF)	J 21 / A 33	18
Performance (HMOV, FMOV, RMOV)	J 10 / A 44	9


relationship matrix comprising 14,113 horses (8 generations)


$$y_{ijkl} = \mu + \text{Event X Team}_i + \text{Sex}_j + a_k + e_{ijkl}$$
 (J)
 $y_{ikl} = \mu + \text{Event X Team}_i + a_k + e_{ikl}$ (A)

28th August 2013, Nantes (Genetic analyses of linear traits; STOCK et al.)

3

Genetic correlations $\widehat{\widehat{O}}_{\widehat{\mathbb{S}}}\widehat{\mathbf{vit}}$							
Linear trait	JUVENILE (N=1,755)		ADULT (N _{CONF} =1,005; N _{HMOV} =953; N _{FMOV} =470)		JUVENILE - ADULT		
	h²	SE _{h²}	h²	SE _{h²}	r _g	SE _{rg}	r _p
Breed type	0.35	0.079	0.45	0.130	0.58	0.185	0.23
Gender expression	0.11	0.057	0.15	0.080	0.54	0.492	0.07
Head coarseness	0.23	0.062	0.06	0.024	0.96	0.241	0.12
Stance of forelimb pastern	0.12	0.057	0.13	0.075	0.42	0.429	0.05
Hock angulation	0.22	0.064	0.20	0.093	0.87	0.270	0.18
Toe stance of forelegs	0.19	0.071	0.26	0.119	1.00	<0.001	0.22
H Walk: Length of stride	0.26	0.071	0.19	0.090	0.12	0.277	0.03
H Walk: Hindlimb activity	0.19	0.058	0.24	0.077	0.19	0.247	0.04
F Trot: Length of stride	0.29	0.079	0.50	0.220	0.71	0.245	0.27
F Trot: Mechanics of front limbs	0.32	0.073	0.26	0.118	1.00	<0.001	0.29
	0.36	0.070	0.34	0.181	0.97	0.246	0.34
Trot: Impulsion	0.50						

Summary of results

- consistent results of uni- and bivariate analyses (mostly $\Delta h^2 \le 0.02$)
- genetic determination of linear traits in both age groups
 - for majority of trait h² = 0.1 0.4
 - similarities in h² pattern, e.g.
 highest estimates for CONF (Breed type) and FMOV (Trot: Impulsion)
- additive genetic correlations of mostly r_g > 0.5
 between corresponding traits in juvenile and adult horses
- indications of required further harmonization of application of the linear scheme

preliminary results to be verified with more data

28th August 2013, Nantes (Genetic analyses of linear traits; STOCK et al.)

10

Conclusions & prospects

- feasibility of linear profiling in regular breeding events using an extensive linear scheme across age groups
 → increased quality of routinely available phenotype data
- usability of linear data for breeding purposes
 - detailed information for breeders
 - subset of traits for future genetic evaluations
 - → new perspectives for breeding
- further research & development
 - optimization of trait definitions (training of judges, repeatability tests)
 - promotion and support of wider use of linear profiles in horse breeding
 - model development to make best use of improved information basis

28th August 2013, Nantes (Genetic analyses of linear traits; STOCK et al.)

11

