

Vortragstagung der DGfZ und GfT am 18./19. September 2024 in Göttingen

Pedigreebasierte und genomische Verwandtschaftsanalysen zur deutschen Reitpferdepopulation

M. Wobbe^{1,2}, H. Alkhoder¹, C. Schmidtmann¹, W. Nolte³, N. Krattenmacher⁴, E. Kalm⁴, R. Reents¹, J. Tetens⁵, G. Thaller⁴, K. F. Stock^{1,2}

¹Vereinigte Informationssysteme Tierhaltung w.V. (vit), Verden / Aller; ²Stiftung Tierärztliche Hochschule Hannover, Institut für Tiergenomik, Hannover; ³ Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie, Moritzburg; ⁴Christian-Albrechts-Universität zu Kiel, Institut für Tierzucht und Tierhaltung, Kiel;
⁵Georg-August-Universität Göttingen, Department für Nutztierwissenschaften, Göttingen

Übersicht

- Inzuchtanalysen
 - Datengrundlage
 - Methode (pedigreebasiert, genomisch)
- mittlere Inzuchtkoeffizienten und Einflussfaktoren
- aktuelle Inzuchtentwicklung
- mögliche Anwendungen auf Basis genomischer Verwandtschaftsanalysen
- Fazit und Ausblick

Göttingen, 19. September 2024 DGfZ/GfT-Tagung: Verwandtschaftsanalysen beim Reitpferd (Wobbe et al.)

_

Datengrundlage Verwandtschaftsanalysen (I)

- deutsche Warmblutpferde
 - Pedigreedaten (Tiere ab 1950)
 - SNP-Genotypdaten (Equine80select Genotyping Array, Illumina)
- Pferdezuchtverbände mit SNP-Genotypisierung (N=7):
 - Deutsches Sportpferd GmbH
 - Hannoveraner Verband e.V.
 - Holsteiner Verband e.V.
 - Verband der Züchter des Oldenburger Pferdes e.V.
 - Springpferdezuchtverband Oldenburg International e.V.
 - Trakehner Verband e.V.
 - Westfälisches Pferdestammbuch e.V.
- Geburtsjahrgänge 2021-2023

Göttingen, 19. September 2024 DGfZ/GfT-Tagung: Verwandtschaftsanalysen beim Reitpferd (Wobbe et al.)

- :

Datengrundlage Verwandtschaftsanalysen (II)

- Stichprobe / Studienpopulation (Zuchtjahr 2021-2023): N=86.033 Pferde
 - davon mit vollständiger 5. Ahnengeneration: N=75.744 Pferde
 - davon mit genomweiten SNP-Genotypen: N=63.169 Pferde, aufgeteilt nach:

- Genotyp-Daten (N=85.401 SNPs)
 - N=57.286 autosomale, qualitätskontrollierte SNPs
 - Callrate (0,05), Callfrequency (0,1), Minor Allele Frequency (0,01),
 Hardy-Weinberg Equilibrium (<0,001), Mendelian Sampling Error (0,003)

Göttingen, 19. September 2024 DGfZ/GfT-Tagung: Verwandtschaftsanalysen beim Reitpferd (Wobbe et al.)

2

Inzuchtanalysen: Methodik

- pedigreebasierte Inzucht (F_{Ped})
 - Software Pedig (Boichard et al. 2002), Programm meuw.f (Meuwissen et al. 1992): Nutzung des Cholesky-Faktors der Verwandtschaftsmatrix (gebildet durch Zurückverfolgung des gesamten Pedigrees jedes Individuums)
- genomische Inzucht basierend auf "Runs of Homozygosity" (F_{ROH})
 - ROH-Ermittlung mittels Software PLINK (Version 1.9, Purcell et al. 2007)
 - Methode nach McQuillan et al. (2008):

$$F_{ROH} = \frac{Ge samt l "ange" aller" ROH}{durch" SNPs \; abgedeckte \; autosomale \; Genoml "ange"}$$

Mittelwerte, Streuung und Spannweiten der Inzuchtkoeffizienten (F_{Ped} und F_{ROH} mit unterschiedlichen ROH-Längen) für gesamte Stichprobe und pro Geburtsjahr

Göttingen, 19. September 2024 DGfZ/GfT-Tagung: Verwandtschaftsanalysen beim Reitpferd (Wobbe et al.)

Ergebnisse: Inzuchtanalyse pedigreebasiert

mittlere Inzuchtkoeffizienten, aufgeteilt nach Pedigree-Vollständigkeit und SNP-Verfügbarkeit

Stichprobe Pferde	Anzahl Pferde	F _{Ped}	Std.
Studienpopulation gesamt	86.033	1,53 %	1,50 %
Studienpopulation genotypisiert	63.169	1,57 %	1,50 %
Pferde mit vollständiger 5. Ahnengeneration	75.744	1,58 %	1,50 %
genotypisierte Pferde mit vollständiger 5. Ahnengeneration	56.425	1,62 %	1,51 %
Pferde mit < 5 Ahnengenerationen	10.289	1,11 %	1,45 %
genotpyisierte Pferde mit < 5 Ahnengenerationen	6.744	1,17 %	1,39 %

Göttingen, 19. September 2024 DGfZ/GfT-Tagung: Verwandtschaftsanalysen beim Reitpferd (Wobbe et al.)

-00000

Ergebnisse: Inzuchtanalysen genomisch

mittlere Inzuchtkoeffizienten und weitere Verteilungskennzahlen der 63.169 Pferde, aufgeteilt nach Definition der ROH-Länge in kb

ROH-Länge	Mittelwert	Std.	Minimum	P10	P90	Maximum
≥ 500	7,83 %	2,29 %	0,05 %	5,31 %	10,76 %	54,24 %
≥ 1.000	7,77 %	2,28 %	0,05 %	5,26 %	10,69 %	52,56 %
≥ 1.500	7,48 %	2,24 %	0,00 %	5,01 %	10,35 %	44,78 %
≥ 2.000	6,79 %	2,19 %	0,00 %	4,40 %	9,59 %	35,55 %
≥ 3.000	5,11 %	2,03 %	0,00 %	2,92 %	7,70 %	31,40 %
≥ 4.000	3,88 %	1,85 %	0,00 %	1,90 %	6,24 %	28,99 %
≥ 5.000	2,98 %	1,69 %	0,00 %	1,21 %	5,14 %	27,22 %
≥ 6.000	2,29 %	1,53 %	0,00 %	0,69 %	4,24 %	26,28 %
≥ 10.000	0,90 %	1,01 %	0,00 %	0,00 %	2,15 %	23,06 %

Göttingen, 19. September 2024 DGfZ/GfT-Tagung: Verwandtschaftsanalysen beim Reitpferd (Wobbe et al.)

Ergebnisse: Inzuchtanalysen genomisch

mittlere Inzuchtkoeffizienten und weitere Verteilungskennzahlen der 63.169 Pferde, aufgeteilt nach Definition der ROH-Länge in kb

ROH-Länge	Mittelwert	Std.	Minimum	P10	P90	Maximum
≥ 500	7,83 %	2,29 %	0,05 %	5,31 %	10,76 %	54,24 %
≥ 1.000	7,77 %	2,28 %	0,05 %	5,26 %	10,69 %	52,56 %
≥ 1.500	7,48 %	2,24 %	0,00 %	5,01 %	10,35 %	44,78 %
≥ 2.000	6,79 %	2,19 %	0,00 %	4,40 %	9,59 %	35,55 %
≥ 3.000	5,11 %	2,03 %	0,00 %	2,92 %	7,70 %	31,40 %
≥ 4.000	3,88 %	1,85 %	0,00 %	1,90 %	6,24 %	28,99 %
≥ 5.000	2,98 %	1,69 %	0,00 %	1,21 %	5,14 %	27,22 %
≥ 6.000	2,29 %	1,53 %	0,00 %	0,69 %	4,24 %	26,28 %
≥ 10.000	0,90 %	1,01 %	0,00 %	0,00 %	2,15 %	23,06 %

Göttingen, 19. September 2024 DGfZ/GfT-Tagung: Verwandtschaftsanalysen beim Reitpferd (Wobbe et al.)

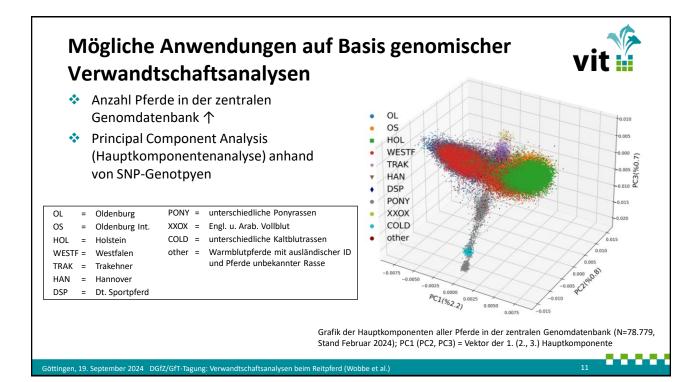
Ergebnisse: Inzuchtanalysen im Vergleich

Mittlere pedigreebasierte (F_{Ped}) und genomische (F_{ROH}) Inzuchtkoeffizienten pro Geburtsjahr und deren Korrelation untereinander (Pearson) im Vergleich, N= 63.169 deutsche Warmblutpferde

	F _{Ped}				F _{ROH} (ROH-Länge ≥ 2.000 kb)				
Geburtsjahr	Mw.	Std.	Min.	Max.	Mw.	Std.	Min.	Max.	Korr.
2021	1,79 %	1,67 %	0,00 %	25,27 %	7,08 %	2,35 %	0,00 %	33,22 %	0,63
2022	1,51 %	1,49 %	0,00 %	26,81 %	6,74 %	2,18 %	0,00 %	35,56 %	0,61
2023	1,52 %	1,41 %	0,00 %	27,03 %	6,71 %	2,10 %	0,00 %	33,60 %	0,59

Göttingen, 19. September 2024 DGfZ/GfT-Tagung: Verwandtschaftsanalysen beim Reitpferd (Wobbe et al.)

Fazit



- moderate Inzucht in der aktuellen deutschen Warmblutpferdepopulation
 - erwartungsgemäß F_{ROH} > F_{Ped}
 - kein Hinweis auf Anstieg der mittleren Inzucht in den aktuellen Geburtsjahrgängen
- längere ROH nur bei knapp 70% der Pferde (mittlerer F_{ROH} 0,9%)
 - geringere Rolle der jüngeren als der historischen Inzucht
- Vorteile genomischer Inzuchtanalysen
 - Unabhängigkeit von Pedigreetiefe und -qualität
 - präzisere Abbildung der Verwandtschaftsverhältnisse
 - mögliche Aussagen über Zeitpunkt des Inzuchtereignisses

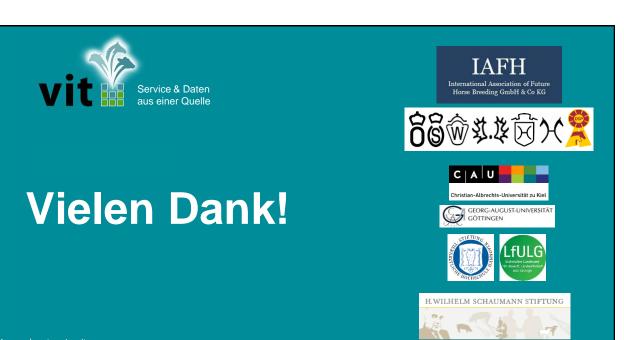
Göttingen, 19. September 2024 DGfZ/GfT-Tagung: Verwandtschaftsanalysen beim Reitpferd (Wobbe et al.)

10

5

Ausblick

- zunehmend bessere Voraussetzungen für genomische Verwandtschaftsanalysen
 - wachsende Anzahl Pferde mit genomweiten SNP-Genotypen (Abstammungskontrolle)
- Einbindung genomischer Parameter zur Populationsstruktur in neue Anwendungen
 - Unterstützung bei Selektions- und Anpaarungsentscheidungen
- Monitoring genetischer Diversität (auch) beim deutschen Warmblut
 - Stärkung der deutschen Pferdezucht



Göttingen, 19. September 2024 DGfZ/GfT-Tagung: Verwandtschaftsanalysen beim Reitpferd (Wobbe et al.)

11

Ihre Ansprechpartner im vit (GB Biometrie & Zuchtwertschätzung):
PD Dr. habil. Kathrin F. Stock E-Mail: friederike.katharina.stock@vit.de; Tel.: 04231-955623
Tierärztin Mirell Wobbe E-Mail: mirell.wobbe@vit.de; Tel.: 04231-955185