

76th Annual Meeting of the EAAP in Innsbruck, Austria, on 25th - 29th August 2025

Genetic parameters of clinical and radiological findings of candidate stallions presented for licensing for German Warmblood breeding

Kathrin F. Stock¹, Muriel S. Folgmann², Karsten Feige², Uta Delling²

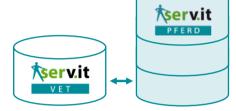
- ¹IT Solutions for Animal Production (vit), Verden (Aller), Germany;
- ² University of Veterinary Medicine Hannover, Clinic for Horses, Hannover, Germany

*E-mail: <u>friederike.katharina.stock@vit.de</u>

Session 8 (abstract no. 786110225)

Outline

- background: framework for targeting health aspects in breeding programs of horses
- aim and approach of the pilot study
 - standardized screening examinations of candidate stallions (central equine health database)
 - estimation of genetic parameters for radiographic findings in the limbs
- results and discussion
- summary, conclusions, prospects



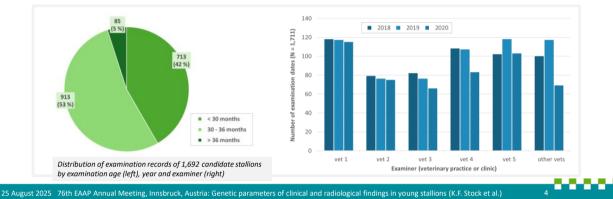
Health aspects in breeding programs for horses

- durability and health as important factors for sustainable horse breeding
- different focusses of data recording on health aspects
 - observations in foals (monitoring of possible genetic defects)
 - results of standardized examinations of adult horses
- breeding regulations for riding horses in Germany:
 - compulsory examination of stallions
 - phenotypic selection criteria (disqualifying findings)
- facultative screenings, veterinary diagnostics etc.
- central equine health data base

25 August 2025 76th EAAP Annual Meeting, Innsbruck, Austria: Genetic parameters of clinical and radiological findings in young stallions (K.F. Stock et al.)

Study framework and approach

- framework
 - central equine health database
 - harmonized screening protocols incl. standardized clinical and radiological examinations
 - all German studbooks for riding horses (FN)
 - valuable sources of information for future genetic and genomic analyses
 - limiting factor: horse sample with available health data
 - → candidate stallions as possible starting point (pilot studies)
- aim: evaluation of the usability of health data on a preselected horse sample (candidate stallions) for breeding purposes


25 August 2025 76th EAAP Annual Meeting, Innsbruck, Austria: Genetic parameters of clinical and radiological findings in young stallions (K.F. Stock et al.)

2

Study sample

- phenotypic data
 - examination results of 1,692 stallions presented for licensing at German Warmblood studbooks in 2018 to 2020
 - original records of the responsible veterinarians
 - → central equine health database

Study sample \rightarrow analyses

- phenotypic data
 - examination results of 1,692 stallions presented for licensing at German Warmblood studbooks in 2018 to 2020
 - original records of the responsible veterinarians
 - → central equine health database
- genetic analyses
 - most commonly recorded clinical findings and radiological findings in the limbs
 - different levels of grouping vs. refined trait definitions
 - all horses vs. excluding horses with indicated joint surgery
 - pedigree information on 4 ancestral generations (17,406 horses in the relationship matrix)
 - estimation of variance components in single- and multiple-trait linear animal models (VCE6 software)

 $y_{ijklmn} = \mu + BSeason_i + ExYear_j + ExAge_k + ExVet_l + animal_m + e_{ijklmn}$

fixed effects: BSeason = season of birth (i=1-5; Nov-Feb, Mar, Apr, May, Jun-Oct), ExYear = year of examination (i=1-3; 2018, 2019, 2020), ExAge = examination age (k=1-3; < 30, 30 - 36, > 36 months), ExVet = examiner (l=1-6; 5+1 veterinary practices / clinics)

Results: clinical findings

Clinical finding	N	prev. [%]	σ_a^2	σ_{e}^{2}	h²	SE _{h²}
injuries / scars	1,654	11.31	< 0.001	0.100	< 0.001	< 0.001
exostosis / swelling / filling (limbs)	1,653	14.16	0.006	0.115	0.048	0.037
- FL	1,653	9.07	0.005	0.076	0.066	0.043
- HL	1,653	6.35	0.003	0.057	0.057	0.050
- cannon / splint bone	1,653	9.80	0.006	0.080	0.074	0.046
- cannon / splint bone FL	1,653	7.44	0.006	0.062	0.089	0.048
- cannon / splint bone HL	1,653	2.90	0.001	0.027	0.045	0.057
respiratory noise	1,653	5.14	0.001	0.044	0.033	0.038

FL = front limbs, HL = hind limbs, prev. = prevalence

- examination protocols indicating presence clinical findings in about half of the stallion
 - → mostly minor findings
- advantages of more specific trait definition
- indications of relevant influence of genetics on the development of 'splints' (FL)
 - → possible relationships with front limb conformation and correctness of movement

25 August 2025 76th EAAP Annual Meeting, Innsbruck, Austria: Genetic parameters of clinical and radiological findings in young stallions (K.F. Stock et al.)

Results: radiological findings |

Radiological finding	N	prev. [%]	σ_a^2	σ_{e}^{2}	h²	SE _{h²}
navicular bone - changes of synovial invaginations	1,678	15.20	0.004	0.118	0.030	0.042
bone contour P3 - exostosis	1,678	4.41	0.002	0.040	0.045	0.039
bone contour P2 - exostosis	1,678	10.55	0.008	0.086	0.087	0.042
bone contour P1 - exostosis	1,677	6.56	< 0.001	0.061	< 0.001	< 0.001
bone contour Mc/Mt3 proximal - exostosis	1,678	11.44	0.012	0.090	0.118	0.052
bone contour Mc/Mt3 distal - indentation	1,678	4.71	0.003	0.041	0.064	0.047
fetlock joint - radiopaque body	1,677	14.31	0.012	0.110	0.096	0.062
- dorsal	1,677	10.08	0.008	0.083	0.084	0.051
- dorsal FL	1,677	6.56	0.003	0.058	0.056	0.041
- dorsal HL	1,677	4.35	0.002	0.039	0.046	0.042
- palmar / plantar	1,677	4.53	0.002	0.041	0.050	0.058
- plantar HL	1,677	4.23	0.001	0.039	0.032	0.055
tarsal joint - radiopaque body	1,677	4.35	0.003	0.039	0.066	0.059
FI = front limbs HI = hind limbs prev = prevalence						

- remarks in radiological examination protocols of about 70 % of the stallions → mostly minor findings
- estimated genetic parameters partly resembling literature figures (young horse screening, clinic material)

Results: radiological findings ||

Radiological finding	N	prev. [%]	σ_a^2	σ_e^2	h²	SE _{h²}	N	prev. [%]	h²	SE _{h²}
navicular bone - changes of synovial invaginations	1,678	15.20	0.004	0.118	0.030	0.042				
distal phalanx (P3) - exostosis	1,678	4.41	0.002	0.040	0.045	0.039				
middle phalanx (P2) - exostosis	1,678	10.55	0.008	0.086	0.087	0.042				
proximal phalanx (P1) - exostosis	1,677	6.56	< 0.001	0.061	< 0.001	< 0.001				
cannon bone (Mc/Mt3), proximal - exostosis	1,678	11.44	0.012	0.090	0.118	0.052				
cannon bone (Mc/Mt3), distal - indentation	1,678	4.71	0.003	0.041	0.064	0.047				
fetlock joint - radiopaque body	1,605	14.70	0.014	0.111	0.112	0.062	1,677	14.31	0.096	0.062
- dorsal	1,605	10.34	0.008	0.084	0.090	0.054	1,677	10.08	0.084	0.051
- dorsal FL	1,605	6.73	0.004	0.059	0.064	0.043	1,677	6.56	0.056	0.041
- dorsal HL	1,605	4.49	0.001	0.041	0.032	0.039	1,677	4.35	0.046	0.042
- palmar / plantar	1,605	4.67	0.003	0.042	0.068	0.062	1,677	4.53	0.050	0.058
- plantar HL	1,605	4.36	0.002	0.040	0.047	0.057	1,677	4.23	0.032	0.055
tarsal joint - radiopaque body	1,633	4.41	0.003	0.039	0.068	0.059	1,677	4.35	0.066	0.059
FL = front limbs, HL = hind limbs, prev. = prevalence		ovel bere	oc with in	dicated	ioint curac			all hor	ses _	

rL = front limbs, nL = fillid limbs, prev. = prevalence

excl. horses with indicated joint surgery

 $(N_{\text{fetlock}} = 52, N_{\text{tarsus}} = 44)$

impact of data quality (completeness)

→ consideration of examination conditions

25 August 2025 76th EAAP Annual Meeting, Innsbruck, Austria: Genetic parameters of clinical and radiological findings in young stallions (K.F. Stock et al.)

Results: radiological findings |||

Radiopaque bodies (excl. horses with indicated joint surgery)	fetlock joint - dorsal FL		fetloci - dors	•	fetlock - plant	•	tarsal joint		
	h²	SE	h² or rg	SE _{h2} (SE _{rg})	h² or rg	SE _{h2} (SE _{rg})	h² or rg	SE _{h²} (SE _{rg})	
fetlock joint - dorsal FL	0.069	0.043	0.701	0.284	0.161	0.193	0.350	0.308	
fetlock joint - dorsal HL			0.033	0.034	0.126	0.326	0.405	0.595	
fetlock joint - plantar HL					0.042	0.049	0.750	0.671	
tarsal joint							0.059	0.042	

- impact of data quality (completeness)
 - ightarrow consideration of examination conditions
- limitations of the study sample (data quantity)
 - ightarrow careful interpretation: possible indications of plausible, previously reported patterns to be confirmed / re-evaluated

Summary & conclusions

- mostly minor clinical and/or radiological findings in young candidate stallions
- few findings with prevalences of > 10%
 - candidate stallions 2018-2020: only two clinical and four radiological findings
 - swellings / exostoses (Mc/Mt, P2), radiopaque bodies (fetlock)
- low heritability estimates for all traits: $h^2 < 0.001$ to 0.089 (clinical) and 0.118 (radiological), with high standard errors (SE \leq 0.059)
- specific results relating to radiopaque bodies in different limb joint locations
 - plausible patterns of h² and rg (≈ osteochondral fragments)
 - consistent with previously described advantages of considering joint (fetlock, tarsus), limb (front, hind) and location within joint (dorsal, palmar/plantar)
- impact of small sample size and preselection
- indications of slower, but possible breeding progress through systematic use of health data on selection candidates rather than population-wide data

25 August 2025 76th EAAP Annual Meeting, Innsbruck, Austria: Genetic parameters of clinical and radiological findings in young stallions (K.F. Stock et al.)

10

Prospects

- ongoing pilot study on young riding horses intended for auction sale
 - screening data, lower level of preselection

- possible focus studies (research collaborations)
 - > special diagnostics, advanced understanding of organ systems or certain disorders
- continued engagement for increased use of the available infrastructure around the central equine health database
 - data recording (user interface serv.it VET)
 - data exchange (e.g. veterinary practice software)
 - extended data analyses
- stepwise development of the required data basis for establishing health traits in genomically supported breeding program of horses

contact: PD Dr. Kathrin F. Stock (E-Mail: <u>friederike.katharina.stock@vit.de</u>; phone: +49 4231 955623) IT Solutions for Animal Production (**vit**) Heinrich-Schröder-Weg 1, 27283 Verden, Germany

- continued engagement for increased use of the available infrastructure around the central equine health database
 - data recording (user interface serv.it VET)
 - data exchange (e.g. veterinary practice software)
 - extended data analyses
- stepwise development of the required data basis for establishing health traits in genomically supported breeding program of horses

Thank you!

