

Horse Evaluation Webinar / EquiMais on 4 June 2021: 'Importance of the morpho-functional evaluation in the genetic improvement of horses'

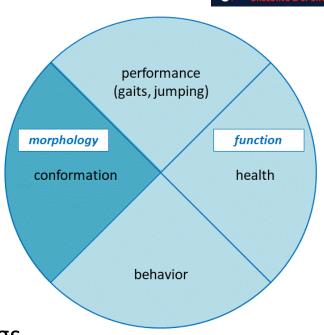
Equine genetic evaluation with special emphasis on linear description

Kathrin F. Stock

IT Solutions for Animal Production (vit), Verden, Germany

Outline

- breeding goals and breeding programs of sport horses
 - data recording
 - data analyses (incl. genetic evaluation)
- routine linear profiling and genetic evaluation for linear traits
 - advances and challenges for horse breeding
 - data structure, traits and modelling
 - role of genetic linear profiles
- implications for breeding applications



Breeding goals of sport horses

- centered on performance under saddle
- different aspects (interactions)
- meeting the needs of the equine sector
 - specialists rather than generalists
 - internationally competitive horses
 - for professional and amateur riders
 - from top sport to leisure riding
- more diverse and more challenging settings than in other livestock species

Breeding programs & data recording

- systematic data recording as basic requirement in animal breeding
- the earlier and the more reliable the data recording, the better the chances of lasting success of breeding programs
- clear target definition as key factor for success (= breeding progress)
 - direct measures of breeding goal traits,
 e.g. competition performance on highest level, lifetime performance,
 placings in dressage competitions, ranking points in show jumping competitions
 - indirect measures (indicator traits)
 e.g. quality of gaits, jumping ability and style, functionally important conformational aspects, absence of radiographic findings of presumed clinical relevance

Data analysis & use: general aspects

- high quality data recording as important first step to be followed by steps of data processing, data analyses, results presentation and use
- influences on the value of the outcome for breeding applications:
 - evaluated sample of horses
 (age, representative of the population)
 - evaluation method (information value, reliability, objectivity, proximity to the breeding goal)
 - data distribution and modelling (phenotypic variability, reflected differences between individual horses)
 - transparency and overall acceptance of the system
 (trust in the whole system from data recording to selection support tools)

Data analysis & use: specific aspects

- high quality data recording as important first step to be followed by steps of data processing, data analyses, results presentation and use
- framework of equine breeding applications:
 - very different types of breeders → challenging job of studbooks (heterogeneous target group with wide range of background, knowledge, ambitions)
 - often emotional rather than rational decision making
 - common skepticism towards more sophisticated analyses (departure from phenotypes) → difficult stand and limited use of breeding values

Genetic evaluations for sport horses

- based on two main sources of data
 - routine assessments of studbooks
 - registration, studbook entry, performance test
 - traditionally valuating scores, increasingly linear profiles
 - sport data
 - incl. young horse competitions (valuating scores)
 - from regional to national, increasingly international
- PROs and CONs
 - data quality, information value (specificity of traits), preselection bias
 - proximity to the breeding goal

Genetic evaluations for sport horses II

- in Germany two types of genetic evaluations:
 - (1) national genetic evaluation for riding horses (FN-ZWS)
 - across studbooks
 - sport traits (rank-based and highest level achieved)
 and young horse traits (valuating scores)
 - dressage and show-jumping
 - breeding values for 12 individual traits + 2 young horse indices
 - positive feedback to the two newly introduced traits (since 2019), HEK Dressage and HEK Jumping, reflecting the 'ultimate breeding goal'
 - → major disadvantage: late availability of the definite phenotype

Genetic evaluations for sport horses II

- in Germany two types of genetic evaluations:
 - (1) national genetic evaluation for riding horses (FN-ZWS)
 - (2) supplementary genetic evaluations
 - within studbook
 - conformation and performance (gaits, jumping)
 - different basis: valuating scores (HANN, HOL, TRAK, DSP / BrbA) or linear profiles (OL/OS); mostly young horses ≥ 2 ½ years of age (mares, stallions +/-, geldings +/-), sometimes also foals
 - different portfolios of breeding values and indices (per studbook)
 - > optimum conditions to be best fit solution for respective breeders

Horse evaluation: requirements

- data recording: informative evaluation criteria
 - clearly and unambiguously defined
 - comparable, repeatable (under field conditions)
 - informative (individual horse, population)
 - breeding goal related, early assessable
- preconditions for data use in breeding: reliable measure or indicator of underlying genetics

objective precise specific decision-relevant

Horse evaluation: requirements

- data recording: informative evaluation criteria
 - clearly and unambiguously defined
 - comparable, repeatable (under field conditions)
 - informative (individual horse, population)
 - breeding goal related, early assessable

objective precise specific decision-relevant

preconditions for data use in breeding: reliable measure or indicator of underlying genetics

traditional valuating scoring

- judgement relative to the breeding goal
- subjective scoring scale
 'very bad' (1) to 'excellent' (10)

linear description (linear profiling)

- assessment relative to biological extremes
- linear scale independent from optimum expression
 (e.g.. 'very short' to 'very long', 'very low' to 'very high')

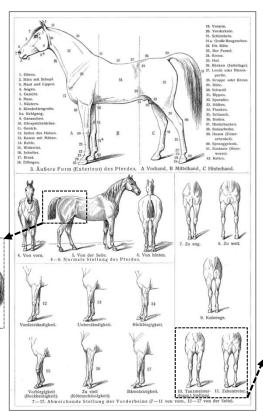
Horse evaluation: requirements II

strong in type, much gender expression, noble head, high-set neck, ..., trot with much knee action, energetic, very supple, with active hind limbs, ...

overall score of 8.0 or 8.5 or ...?

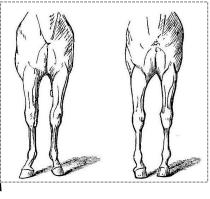
objective precise specific decision-relevant

traditional valuating scoring


- judgement relative to the breeding goal
- subjective scoring scale
 'very bad' (1) to 'excellent' (10)

linear description (linear profiling)

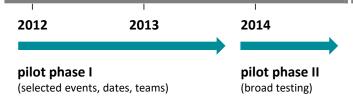
- assessment relative to biological extremes
- linear scale independent from optimum expression
 (e.g.. 'very short' to 'very long', 'very low' to 'very high')


Horse evaluation: requirements III

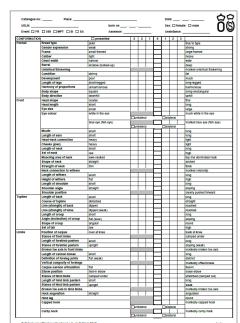
description of specific aspects as basic principle of horse evaluation

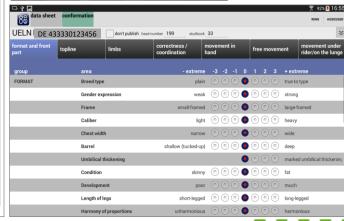
→ linear description (or linear profiling) as practice-proven way to do it systematically

source: Meyers Großes Konversations-Lexikon (Band 15), Leipzig 1908.


Linear description: motivation & start

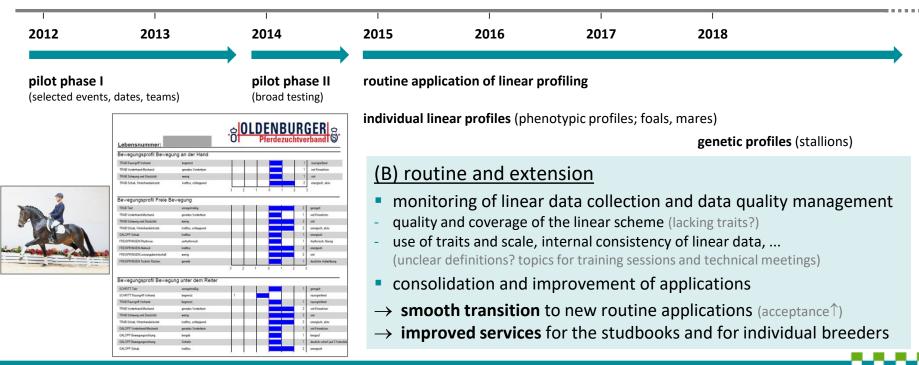
- new role of phenotyping and data-based decision support
 - need of specific information for targeted breeding work
 - advanced methodology requiring high quality data
- interest in genomic selection / genomic applications in horses increasing awareness of the importance of horse evaluation
- obvious limitations of the traditional valuating scoring system vs.
 long-known advantages of linear recording systems
- science-to-practice / practice-to-science initiative to implement linear profiling in sport horse breeding


Linear profiling in Oldenburg (OL, OS)



(A) development and implementation

- pilot studies related to research projects (extra staff for testing and optimizing the system, first data screening)
- application-oriented project work
- → sound basis for broad implementation



Linear profiling in Oldenburg (OL, OS)

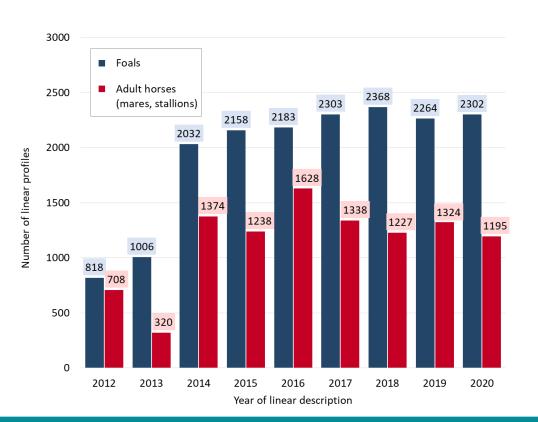
Linear profiling in Oldenburg (OL, OS)

Determinants of the development

- close collaboration of science and practice as key to fast progress and successful implementation
 - smooth transition from R&D to routine
 - transparency and exchange, flexibility of applications
 acceptance and use
- early use of linear data as important driver of innovation
 - continued engagement for optimization of the whole system (data quality management)
 - high motivation of maximize information output (internal use → publication of consolidated information)

Linear data basis 2012 - 2020

- Oldenburg linear scheme (OL, OS)
 - conformation and performance (gaits, jumping, behavior)
 - 7-point numeric linear scale (-3 to +3)
 defect traits / remarks: reduced scale (0 to +3)
 - foals, mares, stallions
 (registration, studbook inspection, mare performance test, preselection for licensing, selected young horse competitions)
- extension of linear data collection (routine)
 - most/all events since 2015 in Germany and abroad
 - kernel team of experienced assessors
- in total N=27,786 linear profiles of 26,069 horses



Distribution of linear data

- 27,786 linear profiles (foals : adult horse $\approx 2:1$)
- 26,069 horses incl. 1,608 horses linearly described as foal and adult horse
- optimum use of linear data across age groups

Data collection → Genetic analyses

- mobile data collection (tablet PC) making it possible to:
 - efficiently collect detailed linear data (active input of deviations only)
 - routinely work with refined trait definitions and comprehensive linear schema (basis of highly valued individual assessment reports, considerable potential for research)
 - directly use maximal information from routine assessments
- standardized detailed information on: conformation, gaits, jumping, behavior

Genetic analyses

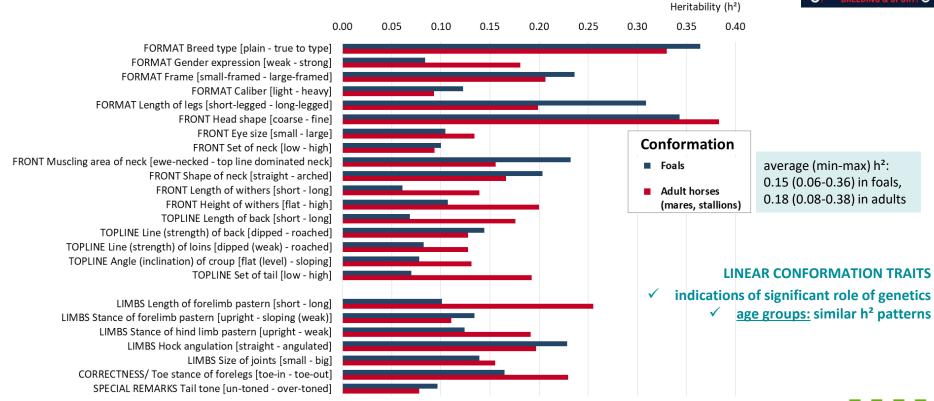
- trait definition within age group and trait category
- selected linear traits

(standard deviation, variance, kurtosis)

- estimation of genetic parameters
- genetic evaluation= prodiction of broading v
 - = prediction of breeding values

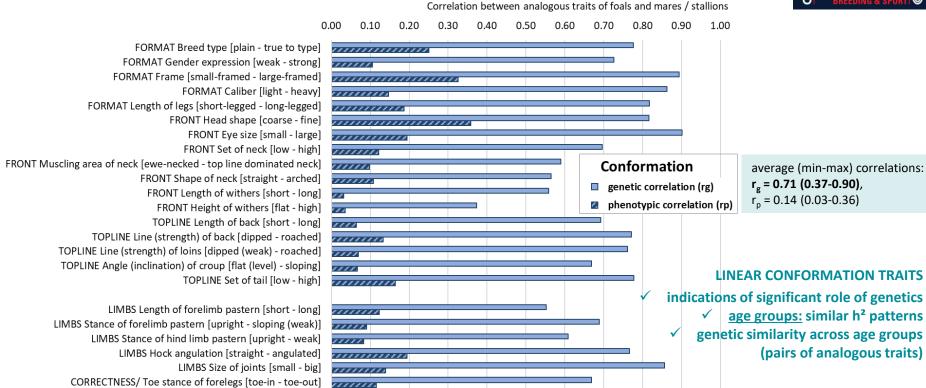
Trait category	No. of traits	
	recorded	gen. eval.
Conformation	73	23
Walk (H, F, R)	6	2
Trot (H, F, R)	11	6
Canter (F, R)	10	4
Jumping (F)	16	10
Special remarks (H, F, R)	8	1
Behavior (H, F, R)	7	0

H = in hand, F = free, R = under rider

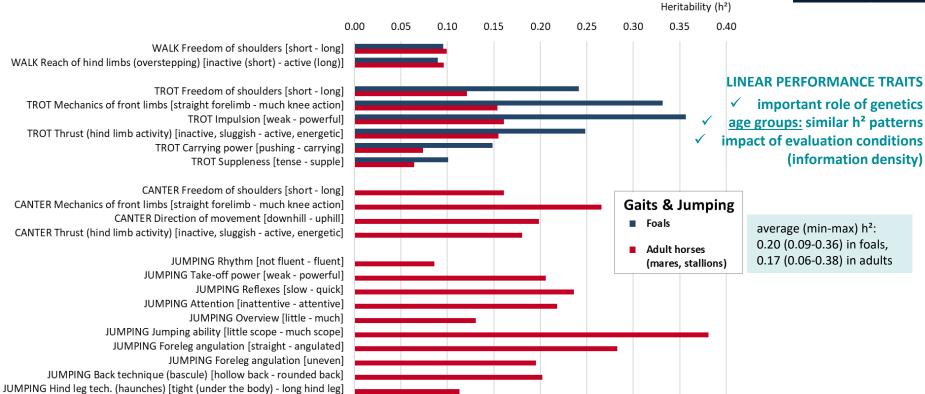

single- and multiple-trait linear animal models

foals: $y_{ijkno} = \mu + SB_i + EVENT-TEAM_i + AGE_M_k + SEX_l + animal_o + e_{ijklop}$

mares+stallions: $y_{ijmnop} = \mu + SB_i + EVENT-TEAM_j + AGE_J_m + PTYPE_n + animal_o + pe_o + e_{ijmnop}$

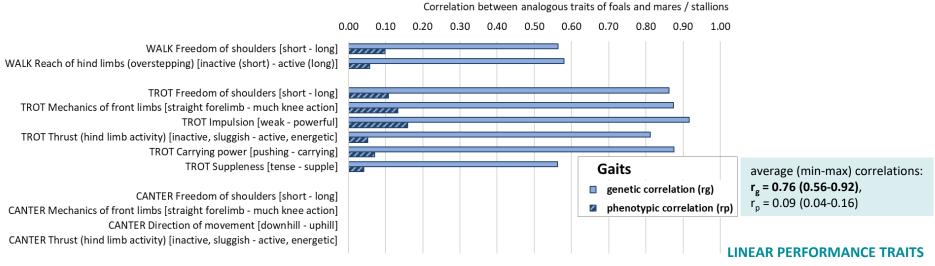

Conformation: heritabilities

Conformation: correlations



1111111111

SPECIAL REMARKS Tail tone [un-toned - over-toned]

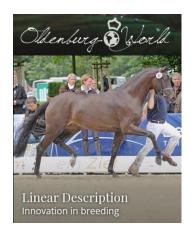

Performance: heritability

Performance: correlations

- important role of genetics
- √ age groups: similar h² patterns
- ✓ impact of evaluation conditions
 - (information density)
- genetic similarity across age groups (pairs of analogous traits)

Data structure & modelling


- results of multivariate estimation of genetic parameters indicating
 - similar patterns of heritabilities (linear aspects with higher/lower h²)
 - genetic similarity across age groups (pairs of analogous traits)
 - genetic similarity across presentation types (adult horses / different conditions)
- multiple-trait repeatability linear animal model (pairs of traits)
- high value of linear foal data (broad basis, early prediction)!

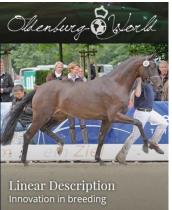

Genetic evaluation: development

- implementation of <u>linear systems for riding horses</u>
 - conformation and performance (gaits, jumping, behavior)
 - foals and/or adult horses (broodmares, stallions, young riding horses)
 - substantial improvement of phenotype data quality: phenotypic linear profiles of individual horses

Linear data basis in the Oldenburg studbooks (OL, OS)

- ✓ since 2012 (end of 2020: 27,786 linear profiles of 20,069 horses)
- ✓ conformation and performance (movement, jumping)
- ✓ same linear scheme and 7-point numeric linear scale (-3 to +3)
 for all horses, i.e. across age groups

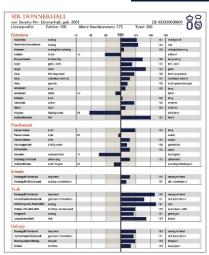
Genetic evaluation: development ||



- implementation of linear systems for riding horses
- extension of <u>breeding applications based on linear profiling</u>
 - clearly distinct set of traits (descriptive)
 - potentially powerful tool for breeders

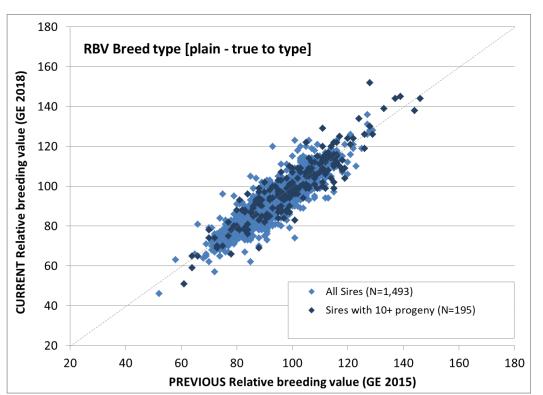
Routine genetic evaluation for linear traits in the Oldenburg studbooks (OL, OS)

- ✓ since 2017, annually in October / November
- ✓ conformation and performance (46 traits)



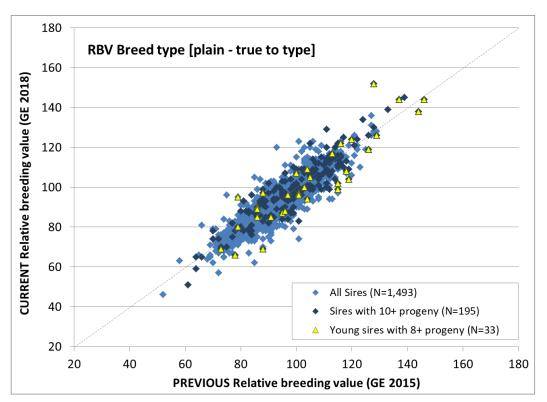
Genetic linear profiles: content

- relative breeding values
 - mean of 100, genetic standard deviation of 20 (orientation as in the linear scheme)
 - base definition: sires born after 1994
 with at least 3 linearly described adult progeny (GE 2020: N=527 sires)
- genetic stallion profiles: two groups
 - (1) frequently used sires (≥ 20 linearly described progeny; age ≥ 7 years)
 - \rightarrow index as weighted combination of EBV: 40% EBV_{Foal} + 60% EBV_{Adult}
 - (2) young sires (maximum age of 6 years, minimum of 8 foals)
 - → EBV for linear traits in foals, i.e. EBV_{Foal}


Genetic linear profiles: use

- expectations?
 - reliable 'filtering out' of genetic dispositions (better than phenotype-based progeny statistics)
 - earlier, more objective and more helpful information for breeders
- concrete questions?
 - Can we use <u>genetic profiles of young stallions</u> with few linearly described foals (first crop) for support of mating decisions?
 - Will the genetic linear profiles <u>change over time</u>? If so, how much?
 - Can we <u>predict the progeny phenotypes</u> by the genetic linear profiles of their fathers? How well?

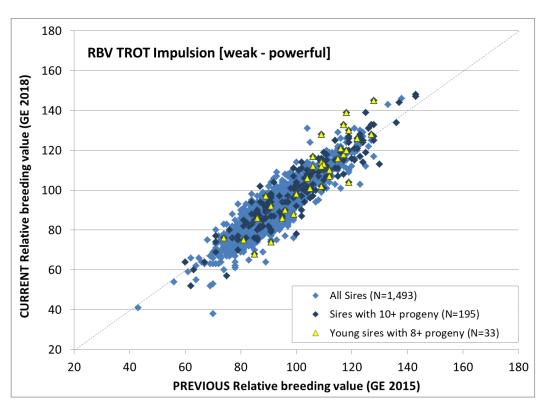
Changes over time? Example I


Explanation:

comparison of results from GE test run with truncated data (GE 2015) with regular GE run using all data (GE 2018) for:

- all sires with progeny already in GE 2015 (on average only 6 progeny)
- sires with more reliable EBV (10 or more progeny already in GE 2015)

Changes over time? Example I


Explanation:

comparison of results from GE test run with truncated data (GE 2015) with regular GE run using all data (GE 2018) for:

- all sires with progeny already in GE 2015 (on average only 6 progeny)
- sires with more reliable EBV (10 or more progeny already in GE 2015)
- young sires (max. age of 6 years) in GE 2015

Changes over time? Example II

Explanation:

comparison of results from GE test run with truncated data (GE 2015) with regular GE run using all data (GE 2018) for:

- all sires with progeny already in GE 2015 (on average only 6 progeny)
- sires with more reliable EBV (10 or more progeny already in GE 2015)
- young sires (max. age of 6 years) in GE 2015

Study answers to breeders' questions

- Can we use genetic profiles of young stallions with few linearly described foals (first crop) for support of mating decisions? **YES** – they are valuable early indicators.
- Will the genetic linear profiles change over time? If so, how much? YES – changes are possible and expected, can be substantial. more progeny with linear data \rightarrow reliability of breeding values $\uparrow \rightarrow$ changes \downarrow
- Can we predict the progeny phenotypes by the genetic linear profiles of their fathers? How well? YES – prediction is possible, advanced use of linear data implies continuous improvement.
- support of expectations regarding linear profiling
 - > reliable 'filtering out' of genetic dispositions (better than phenotype-based progeny statistics)
 - earlier, more objective and more helpful information for breeders

Conclusions & perspectives

- successful routine implementation of linear profiling as important step towards more sustainable competitive breeding
 - substantial gain in information on conformation and performance
 - increased transparency
 - feasible tool for collection of high quality phenotypic data required to benefit from more targeted breeding applications
- to be accompanied by continuous data quality management for optimum use of linear description

Conclusions & perspectives II

- successful routine implementation of linear profiling as important step towards more sustainable competitive breeding
- high value of refined linear phenotypes
 - specific individual characterization (linear profiles of presented horses)
 - improved genetic characterization (genetic stallion profiles)
 - appropriate basis of future genomic applications (genomic profiles)
- engagement for linear profiling = investment in the future

Contact: PD Dr. habil. Kathrin F. Stock (E-mail: friederike.katharina.stock@vit.de; phone: +49-4231-955623)

TAKE HOME:

- engagement for linear profiling = investment in the future
- new and improved phenotypes as suitable targets for new and improved breeding applications
- collaborative approaches to capture the full potential using genetic and genomic tools

Thank you!