

Early life jumping traits and their genetic correlations with later success in competitions in Belgian Warmblood horses

L. Chapard, I. Meurrens, N. Buys and S. Janssens Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium

Sport horse breeding sector in Belgium

Breeding goal: To breed successful show jumping horses

- Belgium: a land of horses with the highest density of horses in Europe
- 2 studbooks in Flanders: Belgian Warmblood horse (BWP) & Zangersheide (Z)
- BWP and Z studbooks: open studbooks
- Belgian breeds of Warmbloods (BWP & Z): an admixed population
- BWP and Z horses are among the most successful horses in the world

The BWP linear scoring scheme for early life jumping traits

Goal: To assess horses' jumping capacity freely (FJ) or under saddle (JS) at early age

- Operated since 2003 for FJ and 2014 for JS
- Same traits are scored during FJ and JS contests on a 9-point scale (from -20 to 20)

Léa Chapa

ard KU LEUVEN

"Early life" jumping traits

Jumping

(7 traits)

- Scope
- Take-off (power/quickness)
- Technique of forelegs
- Technique of back
- Technique of haunches
- Attitude (willingness)
- Care

Canter

(4 traits)

- Stride length
- Impulsion
- Elasticity
- Balance

Léa Chapard

Data editing for genetic evaluation (early life jumping traits)

- Removal of records with > 5 missing values
- Removal of horses which could not be linked to the pedigree
- Application of a grouping strategy which ensures a minimum of 5 records per "year*assessor*location"-level (contemporary group)

	Initial number of records	Final number of records
Free jumping	2280	2201
Jumping under saddle	1768	1753

5

Léa Chapard

KU LEUVEN

Data on show jumping competitions

- Selected from the Belgian show jumping data (K.B.R.S.F.): elementary performances
- Competitions records in the study: 2004 2019
- Fence height: 65 160 cm
- UELN, rider, sex, age, ranking

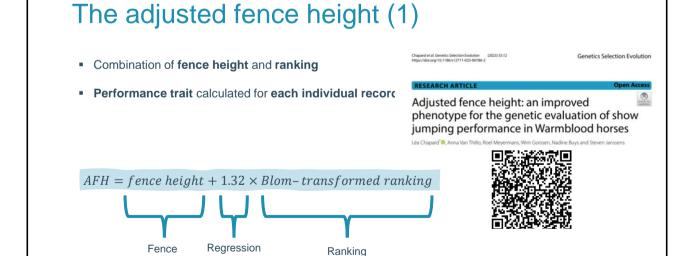
Léa Cha

Data editing for genetic evaluation (competitions data)

- Removal of competition records which could not be linked to a horse
- Removal of records of horses which could not be linked to the pedigree
- Removal of records of horses < 2 y.o or > 25 y.o

coefficient

height co (~ competition difficulty)


Removal of records of riders which had competed with only one horse

	Initial number of records	Final number of records
Competition records	2 436 461	674 527
Horses	72 873	26 351
Riders	30 636	8 410

7

Léa Chapard

KU LEUVEN

Léa Chapard

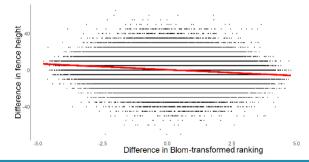
The adjusted fence height (2)

Blom-transformed ranking: Approximation of "normal score" of rankings (Blom, 1958)

Blom-transformed ranking =
$$\phi^{-1} \left(\frac{r - \frac{3}{8}}{n + \frac{1}{4}} \right)$$

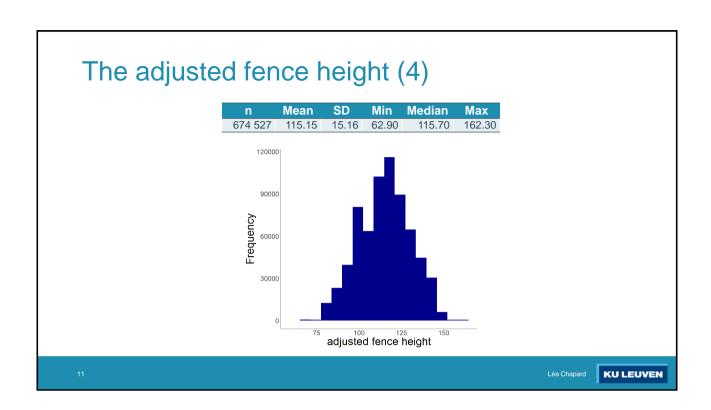
• Example of a competition with 50 competitors:

1/50: Blom score = 2.24 10/50: Blom score = 0.87 25/50: Blom score = 0.03 50/50: Blom score = - 2.24


Blom G. Statistical estimates and transformed beta-variables. Wiley, New York: 195

Léa Chapard

KU LEUVEN


The adjusted fence height (3)

- Linear regression: $\Delta fence\ height = -1.32 \times \Delta Blom$ -transformed ranking + 0.44
- Differences in fence height and Blom-transformed ranking were calculated within horses from consecutive performances in competitions

10

Léa Chapard

Statistical genetic models

- Analyses carried out with remlf90
- Use of an integrated pedigree (BWP + Z horses, Chapard et al., 2022)

AFH:
$$y_{ijkl} = \mu + sex_i + age_j + animal_k + c_k + rider_l + e_{ijkl}$$

Early life jumping trait: $y_{ijkl} = \mu + sex_i + age_j + animal_k + cg_l + e_{ijkl}$

c: permanent environmental effect cg: contemporary group effect

12

Chapard L, Buys N and Janssens S,. Methodology to integrate pedigrees of two Belgian Warmblood studbooks and it mportance for genetic evaluation. In Proceedings of the 12th WCGALP: 3-8 July; Rotterdam. 2022.

.éa Chapard

Heritabilities of early life jumping traits and their genetic correlations with AFH

	Free jumping			Jumping under saddle		
	h²	cg²	r _g	h²	cg²	r _g
Scope	36%	9%	65%	20%	19%	56%
Take-off	27%	10%	59%	15%	25%	54%
Technique of forelegs	38%	10%	63%	11%	20%	49%
Technique of back	22%	8%	57%	12%	29%	49%
Technique of haunches	13%	13%	58%	20%	19%	49%
Attitude (willingness)	4%	18%	40%	8%	25%	40%
Care	11%	13%	58%	9%	25%	58%
Stride length of canter	20%	5%	56%	28%	9%	48%
Impulsion	25%	5%	58%	23%	15%	55%
Elasticity of canter	10%	7%	58%	15%	25%	47%
Balance	16%	14%	53%	19%	19%	46%

Early life jumping traits are heritable and moderately to highly correlated with AFH

13

Léa Chapard

KU LEUVEN

Efficiency of indirect selection on early life jumping trait

	Free Jumping	Jumping under saddle
Scope	113%	72%
Take-off	89%	60%
Technique of forelegs	112%	47%
Technique of back	77%	49%
Technique of haunches	60%	63%
Attitude (willingness)	23%	35%
Care	56%	50%
Stride length of canter	72%	73%
Impulsion	84%	76%
Elasticity of canter	53%	79%
Balance	61%	91%

■ Efficiency of indirect selection > 100% ⇒ Selecting on early life jumping trait is more efficient

14

Léa Chapard

Conclusion

- Early life jumping traits are lowly to moderately heritable (h²=4-38%)
- Genetic correlations between AFH and early life jumping traits are positive and high for some traits (r_a=40-65%)
- Possible use of early life jumping traits as proxy for later success in competitions

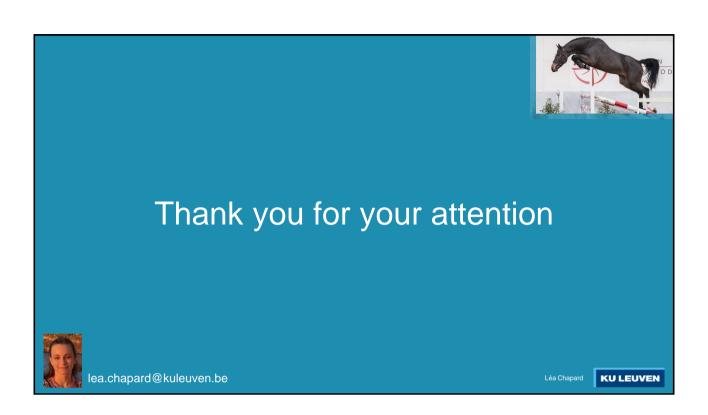
15

Léa Chapard

Acknowledgments

Data providers

Computing resources and services


Funding

16

Léa Chapard

